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ABSTRACT In this paper, we derive an accurate power model for video streaming which we condense to
the essential components contributing the most to the overall power consumption. As a use case, we choose
mobile devices on the receiver side performing video streaming in broadcasting or end-to-end scenarios. In
modeling, we consider the complete video streaming toolchain, which mainly consists of data acquisition,
video processing, display, and audio handling. We compose an overall power model with the help of models
from the literature and propose a dedicated feature selection approach to reveal the most important factors
related to power consumption. The resulting models achieve mean estimation errors below 7.61%. Results
from feature selection indicate that the display brightness, the bitrate, and the frame rate have the highest
impact on the power consumption.

INDEX TERMS Video coding, modeling, power measurement, mobile communication, streaming,
H.264/AVC, HEVC.

I. INTRODUCTION
In recent years, video streaming in end-to-end or broadcasting
scenarios has become the main contributor to global Internet
traffic. Forecasts indicate that the share of video data will
even increase to more than three fourths in 2022 [1]. World-
wide, all this data is received by millions of portable devices,
such as smartphones or tablet personal computers (PCs),
which must process the data to be able to display video and
play audio for high-quality user experiences. Furthermore,
a recent study revealed that 1% of the global greenhouse
gas emissions is caused by video communications [2], which
shows that modern video systems contribute significantly to
climate change. As a consequence, research on energy effi-
cient video communication solutions is of vital importance.

In this respect, a large amount of research is performed
to optimize the energy efficiency or the complexity of
distinct components, such as the encoder on the sender
side [3]–[5], the delivering network [6]–[9], or the video
decoder [10]–[13] and the display on the receiver side [14].

The associate editor coordinating the review of this manuscript and

approving it for publication was Honggang Wang .

In this paper, we focus on a mobile device on the receiver
side whose battery is highly burdened by the streaming pro-
cess, which is characterized by a computationally complex
software application and power-intensive hardware modules.

A high-level analysis of the power consumption of a
modern smartphone revealed that during local video play-
back with hardware decoding, more than 1W of power is
constantly needed [15]. Consequently, a fully charged bat-
tery is drained after a maximum of 15 hours (at a capacity
of 3000mAh and a supply voltage of 5V). For virtual reality
applications, we have shown that the reduction of the resolu-
tion helps in saving power [16]. Furthermore, it was shown
that reducing the resolution of a streamed video instead of
increasing the quantization is beneficial both in terms of
subjective quality and power consumption [17].

In contrast to the aforementioned publications, which only
considered pure video streaming, this paper deals with the
complete pipeline including transmission and audio handling.
To this end, we split up the streaming process into multiple
functional tasks running in parallel. From this perspective,
we can break down the complete streaming process into the
components depicted in Fig. 1. As shown on the left side,
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FIGURE 1. Flowchart of the video streaming process with the
components data acquisition, video processing, display, audio processing,
and speaker.

the streaming process starts with the acquisition of audio and
video data, which can be read from the local memory or
received through a network. After demuxing, the video data
is processed (top branch), which means that it is decoded,
rendered, and displayed. On the bottom branch, the audio data
is decoded and the reconstructed raw audio signal is played
using a speaker.

In the literature, one can find a wide variety of works
that consider the power consumption of single parts of
this pipeline. For the source network, Zou et al. compared
the power efficiency of a Wi-Fi connection to a long-term
evolution (LTE) connection when using H.264/AVC coded
videos [18]. A very detailed analysis, which focused solely on
Wi-Fi power consumption including interference handling,
was performed by Sun et al. [19]. For audio decoding using
MP3, Simunic et al. constructed a model for software pro-
cessing and suggested power saving algorithms based on code
optimizations [20]. Furthermore, Dolezal and Becvar [21]
considered audio decoding and output via a speaker.

For video, many researchers focus on the video decod-
ing process. For software decoders, high-level models [22]
using few bit stream properties as well as advanced models
using up to 90 bit stream features for accurate energy esti-
mations were proposed in [23]. Furthermore, the impact of
coding standards, such as MPEG-2, H.263, and H.264/AVC,
on power consumption was analyzed in detail in [24]. For
hardware decoders, models were developed for power esti-
mation in [10] and for energy estimation in [25].

All these papers reflect the state of the art allowing for
accurate and reliable power and energy estimates of distinct
processes or hardware modules in the streaming pipeline.
However, in applied video streaming, these modules are run-
ning in parallel and their functionality and processing flow is
interconnected, such that the power and the energy consump-
tion might differ significantly. To the best of our knowledge,
this paper is the first to analyze the power of the complete
pipeline in detail.

To analyze the end-to-end process, we construct a linear
model reflecting the functionality of the components shown
in Fig. 1 at a high abstraction level. Measuring in various test
conditions, we find the dependency with respect to streaming
parameters such as the bitrate, the frame rate, or the resolution
of the video sequence. Therefore, we perform a high number

of measurements on two applications and three devices, train
the proposedmodel in a least-squares sense, and ensure valid-
ity by performing cross-validation. Then, a feature selection
algorithm is presented which is used to identify the most
important parameters related to the power consumption. In
summary, this work provides the following contributions,
which from our review of the state of the art, has not been
studied before:
• Consideration of the complete streaming pipeline.
• Construction of an overall power model.
• Derivation of main parameters related to the power con-
sumption.

In Section II, we review various energy and power models
from the literature and insert them into a power model for
accurate power estimation of the complete streaming process.
Then, in Section III, we discuss the power measurement
setup as well as the tested hardware and software solutions.
Furthermore, the set of measurements is described including
the set of input sequences and the set of input audio files.
Afterwards, Section IV presents the training and validation
method, which is used to assess the proposed energy mod-
els. Section V introduces our proposed method for feature
selection and finally, Section VI interprets the results and
presents a power analysis of the tested streaming applications.
Section VII concludes this paper.

II. POWER MODELING
For ease of application and to allow the use of linear algebra,
we propose to use a linear power model in the form

P̂ = v · x, (1)

where P̂ is the estimated power of the device during stream-
ing, v a row vector of variables describing the streaming pro-
cess, x a column vector of model parameters of the same size,
and the symbol ‘·’ denotes the dot product. In the evaluation,
wewill show that this linear approach is sufficient whenmean
estimation errors below 10% are acceptable.

In the remainder of this paper, the variables in v are denoted
by Roman letters. These variables describe the streaming
process, for instance, using properties of the video stream,
such as the frame rate fv or the resolution S, or using flags
indicating whether or not a component, such as the audio
branch, is active. These flags are denoted by the letter F ,
and can obtain a value of ‘1’ for active or ‘0’ for non-active.
The parameters in x are denoted by uppercase and lowercase
Greek letters. The parameters with uppercase letters relate to
the flags F , and can be interpreted as constant offsets. The
lowercase Greek parameters for their part are attributed to the
variables describing the streaming process.

In a first step, we assume that each component shown
in Fig. 1 contributes to the complete power in an additive
fashion. As we assume streaming to be a static process,
we can neglect a time dependency and model the complete
streaming power Pstream by

Pstream=50 + Pdata + Pvideo + Pdisplay + Paudio + Pspeaker.

(2)
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In addition to the components shown in Fig. 1, we consider an
offset parameter 50. The corresponding variable in v is con-
stantly set to one.Pdata can be interpreted as the power needed
for data acquisition through a network, Pvideo is the power
needed for video decoding and rendering (e.g., transforma-
tion fromYCbCr to RGB), and Pdisplay is the power needed to
display the video or to send it to a high-definition multimedia
interface (HDMI) port. Paudio is the power needed for audio
processing and Pspeaker the power needed for playing the
sound via a speaker or sending it to an audio output port
(HDMI or headset). In the following subsections, we discuss
the modeling of these components in detail.

A. DATA ACQUISITION
First, we consider the power for data acquisition Pdata. In the
literature, the power needed to read audio and video data
from the local memory is often considered to be part of the
audio and video processing powers Paudio and Pvideo [10],
[23]. Consequently, we only consider network streaming in
the data acquisition power. A simple model is proposed for
4G LTE networks by Huang et al. [26]; the same model was
indeed used for Wi-Fi networks by Xu et al. [27]. Because it
is straightforward, and has been proven to be valid for these
two network technologies (4G and Wi-Fi), we assume that it
can also be valid for other network technologies, such as 3G
or hardwired Ethernet.1 It is given by

P̂net = 0 + β · b, (3)

where b is the incoming bitrate of the stream, which is the sum
of the audio bitrate ba and the video bitrate bv; 0 is a constant
offset, and β is a parameter describing the linear relation
between the bitrate b and the receiving power. In practice,
during measurements, we maintain only the target network
connection, which is hence used for downloading the stream
(e.g., during Wi-Fi streaming, GSM networks, such as 3G or
LTE, are disabled). The resulting model reads

P̂n,data = βn · bn + 0n · Fn, (4)

where n denotes the network type, which in this work can be
Wi-Fi, 3G, or Ethernet (RJ45). The overall data acquisition
power can then be modeled as the sum over all considered
networks

P̂data = P̂Wi−Fi,data + P̂3G,data + P̂ethernet,data, (5)

where in practice, none or only one of the summands is
nonzero because the other networks are switched off.

B. VIDEO PROCESSING POWER
In the literature, many models were proposed for estimating
the decoding energy and the decoding power [10], [11], [22],
[23], [28], [29]. As most modern smartphones provide hard-
ware video decoder modules that are more power-efficient

1This assumption will be validated in Section VI.

than software video decoders [15], we only consider a hard-
ware decodermodel proposed in [25]. The original model was
designed to estimate the decoding energy and reads

Êvdec=40+90 · T+εframe · Nframes+εbit · Bv+πS · S · T ,

(6)

with 40 being a constant offset energy for the initialization
of the process,90 a constant offset power during processing,
T the duration of the sequence, εframe the energy per frame,
Nframes the number of coded frames, εbit the bit-dependent
energy, Bv the size of the video bit stream in bits, πS the
power needed to reconstruct a single pixel, and S the number
of pixels per frame, which is the product of the luma pixel
width with the luma pixel height. The power per pixel was
used instead of the energy per pixel to implicitly take the
frame rate fv into account by

fv =
Nframes

T
. (7)

To apply this model in the power domain, we divide by the
duration T and let T approach infinity assuming an endless
sequence as

P̂vdec = lim
T→∞

Ê
T

= lim
T→∞

[
40

T
+90 + εframe ·

Nframes

T
+ πS · S

+ εbit ·
Bv
T

]
= 90 + εframe · fv + πS · S + εbit · bv, (8)

where we exploit (7) and the relation between the bitrate and
the file size

bv =
Bv
T
. (9)

In thismodel, the bit stream properties frame rate fv, the pixels
per frame S, and the video bitrate bv are used as variables.
In addition, the rendering of the output pixels needs to be

taken into account. We did not find any suitable model for
this power in the literature. Therefore, we propose using the
number of pixels to be rendered per second as

P̂render = ρ · S · fv, (10)

where ρ is the model parameter.
It is worth mentioning that we consider the application

to be a black box in which rendering and decoding cannot
be separated in measurements. Furthermore, we take into
account two different video codecs (HEVC and H.264/AVC)
and find empirically that the codec only has a marginal
influence on the overall power consumption. Hence, we com-
bine (8) and (10), neglect the codec, and obtain

P̂video = Fv ·90 + εframe · fv + πS · S + εbit · bv + ρ · G

(11)

with the new variable G = S · fv that describes the pix-
els per second. Fv indicates whether a video is transmitted.
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Please note that when Fv = 0, the other variables are zero,
too, such that the overall estimated power P̂video also yields
zero.

C. DISPLAY OPERATION POWER
In this work, we use liquid crystal displays (LCD) inmeasure-
ments. Kim et al. found that the power of such displays is lin-
early related to the backlight brightnessH [30]. However, our
measurements as well as observations made by Carroll and
Heiser [31] suggest that the power can also have a quadratic
relation with the backlight brightness. Hence, to cover both
cases, we propose using a quadratic model as

P̂display = Fdisplay ·�+ κ · H + λ · L, (12)

where Fdisplay indicates whether the display is switched on,
L = H2 is the square of the backlight brightness, and �,
κ , as well as λ are the modeling parameters. The tested
Android-based smartphones provide a range of brightness
levels of {0, 1, . . . , 255}.

D. AUDIO PROCESSING POWER
As an audio processing power model, Simunic et al. pro-
posed to use processor events, such as the number of instruc-
tions and memory reads [20]. As our goal is to model the
power exploiting high-level parameters, we avoid performing
a complex analysis on processor events. Therefore, similar
to the video processing case, we consider the input audio
bitrate ba, the sampling rate fa, and the number of audio output
channels C . The proposed power model reads

P̂audio = Fa ·8+ η · ba + θ · fa + ζ · C + ξ · R, (13)

where R = fa · C is the number of audio samples per second.
Similar to video decoding, we tested two different audio
codecs (MP3 and AAC) but found no significant difference in
the overall power consumption. The model parameters are8,
η, θ , ζ , and ξ . Fa states whether an audio stream is available.

E. SPEAKER OPERATION POWER
For the speaker, we adopt two variables. First, we adopt the
output volume O, which, in Android, can be set in the range
of {0, 1, . . . , 16}. Additionally, we assume that the power
of the discrete audio signal has an influence on the power
consumption. The signal power is given by

psignal =
1
N

N∑
l=1

(x[l])2 , (14)

where x[l] ∈ [−1, 1] is the normalized amplitude of the audio
signal (16 bit per sample) at the time l. N is the complete
number of audio samples [32]. The model reads

P̂speaker = ω · O+ µ · psignal (15)

with the parameters ω and µ, which, respectively, describe
the impact of the volume and the signal power on the power
consumption.

TABLE 1. Input variables and parameters for modeling the power
consumption of video streaming.

Table 1 summarizes all considered power components and
lists the input variables and parameters. The vector x consists
of all the parameters, and the vector v is derived using the
variables in the third column.

III. POWER MEASUREMENT SETUP
The literature proposes a significant number of power mea-
surement methods. Simple methods rely on power moni-
tors integrated into a chip. For modern Intel processors,
the running average power limit (RAPL) tool [33] was used
in [23] and [34]. Using complexity profiling tools, such as
Valgrind [35] or PAPI [36], metrics such as the number of
central processing unit (CPU) instructions and the memory
access can be obtained. These tools are additionally used for
energy or power estimation [11], [37], [38]. Finally, power
meters can be exploited. One measurement solution is to
derive the power of distinct hardware modules using inte-
grated shunts [15], which is time consuming and costly. The
method used in this work relies on the power consumption
of the complete device (i.e., a smartphone or an evaluation
board). To this end, we measure the power consumption
through the main supply jack or the battery connectors. Sim-
ilar approaches were used in [10], [23].

For the purposes of this research, this method was chosen
to ensure that all relevant hardware modules in the stream-
ing process are taken into account. These modules include
the network interface, the memory (random-access-memory,
cache, buffers), the CPU, the graphics processing unit (GPU),
and the display. Hence, the measured powers correspond to
the complete power needed in real applications.

Going forward, Subsection III-A presents the general mea-
surement setup, while Subsection III-B introduces the mea-
sured portable devices, and Subsection III-C shows the tested
software. Afterwards, Subsection III-D presents the results
of a typical single power measurement and explains how
we can ensure that measured power values are reliable and
statistically sound. Finally, Subsection III-E lists all video and
audio files used in separate measurement instances.

A. GENERAL MEASUREMENT SETUP
The setup for measuring the complete power consumption of
a device under test (DUT) is depicted in Fig. 2. The DUT is
located top-center, and can be a smartphone, an evaluation
board, or any other device meant for live streaming. The
DUT is energized by the power meter on the left using the
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FIGURE 2. Measurement setup with DUT, power meter, streaming server,
and workstation for measurement automation.

battery connectors or the voltage input jack. A remote broad-
casting server is used to simulate real-time video streaming
(right). Depending on the use case, hardwired Ethernet or
wireless connections such asWi-Fi or LTE are tested. Finally,
the workstation performs automatic power measurements
using universal serial bus (USB) control for the power meter
and for the DUT. During power measurements, the USB
connection to the DUT is disabled. A hardwired Ethernet
network connection is used for streaming the test sequences
from the workstation to the broadcasting server.

The power meter provides an integrated power supply.
The supply voltage can be set manually, depending on the
demands of the DUT. The power values are sampled at 5 kHz
and are transmitted via USB to the workstation.

The server is an open real-time messaging proto-
col (RTMP) broadcasting server. Using FFmpeg, Flash
video (FLV) containers [39] can be uploaded to this server,
which broadcasts this data to the Internet. The stream can then
be requested and received by any online device worldwide
using wired or wireless connections.

B. DUTS
The first device (Device A) used as a DUT for power
measurements is the Eragon820 software development
kit (SDK). As the main processing unit, it includes an
Eragon820 system-on-module (SOM) which implements a
Qualcomm Snapdragon 820E processor. The main properties
of this chip are listed at the top of Table 2.

The board is configured to enable stable and reliable power
measurements. Therefore, all unnecessary services, such as
positioning, Bluetooth, and Wi-Fi (if it is unneeded for mea-
surements) are stopped. Unneeded applications are unin-
stalled or disabled. The application cache is emptied to avoid
disturbances from applications running in the background.

The board is set to developer mode and it is rooted to
allow control of the power management policy.With a special
software application, the two high-performance processor
cores are disabled and the two low-power processor cores
are set to high-performance processing because initial tests
showed that at least two processors need to be enabled for
fluid playback. This setting is chosen to reduce the effect

TABLE 2. Main specifications of the three tested DUTs. The displays of
device B and C use the in-plane switching (IPS) technology for
thin-film-transistor (TFT) LCDs.

of dynamic voltage and frequency scaling (DVFS, [40]).
Furthermore, the performance governor of the GPU is also set
to ‘performance’. Consequently, the processing units always
run at the highest voltage and frequency.

The second device (Device B) is a consumer smartphone
released in December 2015 (Fairphone 2). For our measure-
ments, no application is stopped or cleared from the cache.
A network connection to providers is always established
to ensure a realistic environment. In terms of background
services, Bluetooth and global positioning system (GPS) are
always disabled because they are not needed for streaming.
Two networks are tested: 3G and Wi-Fi, where only one
network is enabled during the streaming process. Power man-
agement is set to the default settings.

Device C is another consumer smartphone (LG H812).
Except for it being rooted and not connected to a network
provider, its configuration is similar to Device B.

C. SOFTWARE
Two Android applications are tested which implement the
video streaming process. App I is the VLCmedia player [41].
It is an open source video streamer and video player imple-
menting the complete toolchain depicted in Fig. 1. It supports
a vast number of codecs (H.264/AVC, HEVC, VP9, etc.),
container formats (AVI, MP4, FLV, etc.), and streaming pro-
tocols (RTP, RTMP, HTTP, etc.). Therefore, it is highly suited
for detailed streaming power analysis.

The second application (App II) is mainly designed for rich
communication services (RCS). The application’s pipeline
works as follows. First, the communication stack receives
RTMP packets that are decoded into an H.264-coded video
and an audio stream. The video stream is decoded through
the Android platform’s hardware decoder into raw YCbCr
frames, which are then sent to a pre-allocated OpenGL
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FIGURE 3. Power consumption of showcase streaming process. The blue
parts correspond to the initialization of the application (left) and the exit
(right), while the red part corresponds to the static streaming.

surface. A game engine reads from this surface to render
the video and provides a shader to transform the raw YCbCr
frame into a regular RGB frame ready for viewing.

D. POWER MEASUREMENTS
Fig. 3 shows the streaming power for a high-definition
(HD) sequence (device A, App I, streaming via Ethernet).
The curve shows that at the beginning of the measurement,
the device is in idle mode (∼ 1.8W). At approximately 4 s,
the streaming application is launched. Loading and prepar-
ing the stream takes up to approximately 10 s, when the
video is starting to be displayed on the screen (red curve).
At 24 s, the process is stopped and the device returns to idle
mode.

In this work, we concentrate on the pure streaming power
(red curve), and as such, the blue parts of the curve are
ignored. Considering a live streaming solution in which the
duration is unknown, this is a valid assumption. The advan-
tage is that depending on the streaming duration, the energy
can be easily calculated by multiplying the mean power with
the duration.

Initial tests showed that when the same measurement is
performed multiple times, the resulting mean power can vary
significantly, for instance, because of background processes.
Consequently, there is no assurance that a single measure-
ment will return a meaningful average power value. Hence,
each streaming configuration is measured up to 15 times. To
speedup the measurement procedure, a confidence interval
test [42] is applied for each streaming configuration if a
minimum number of 5 measurements was done. To this end,
the average of the mean power values ¯̄P and the confidence
interval with a probability of 99% are calculated. If the confi-
dence interval is located inside the interval [0.99 · ¯̄P; 1.01 · ¯̄P],
the measurement is assumed to be accurate, and is terminated
early. Otherwise, the maximum of 15 measurements is per-
formed and an outlier check is performed manually.

The resulting power values ¯̄P include the static and the
dynamic power, i.e., the power consumption when the device
is idle plus the power needed for processing. For the smart-
phones (devices B and C), the idle power, which yields
less than 1mW, is neglected. However, the evaluation board
(device A) shows a high static power when idle, which
can be attributed to the peripheral modules (e.g., Ethernet

TABLE 3. Test sequences used for power measurements. All sequences
have a duration of 10 s. The sixteen sequences at the top are taken from
the HEVC common test conditions [43] and the two sequences at the
bottom show a static white screen and a static black screen, respectively
(all luminance values yield 255 and 0).

connector, HDMI output). This power of approximately
1.19W is subtracted from the overall power for further anal-
ysis.

E. SET OF MEASUREMENTS
The single instances of the set of measurements are chosen
based on the following guidelines:
• The measured variables shall avoid high correlations.
• For each variable, at least four independent measure-
ment instances must be performed to avoid overfitting.

• Each measurement instance should be applicable to
common streaming applications.

To have a representative set of video sequences, we take
16 sequences from the HEVC common test conditions [43].
Each sequence is coded with four quality levels (x264 and
x265 encoding, medium preset for both H.264/AVC and
HEVC video codecs, constant rate factors 18, 23, 28, 33).
Hence, we measure a large number of different video frame
rates, resolutions, and bitrates. The input sequences and their
main properties are listed in Table 3.

For the display power, we assume that the chosen video
files are representative in terms of the mean luminance
(range [0, 1]), which varies between 0.227 and 0.636. The
BlackScreen and WhiteScreen sequences additionally ensure
that the lower and upper limits of the achievable range
(0 and 1) are represented. Assuming different brightness
levels, we restrict our analysis to the three states minimum,
medium, and maximum brightness {0, 0.5, 1}, which were
measured for four different input sequences plus BlackScreen
and WhiteScreen.
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TABLE 4. Source audio files for power measurements and main
properties. C is the number of channels and the power is the digital
signal power of the 16 bit samples (range [−1, 1]).

For audio measurements, we employ the signals listed
in Table 4. The properties comprise different content, sam-
pling rates, number of channels, and audio signal powers.
Most of the files are sampled at 48 kHz. We downsampled
four of them to 16 kHz and 44.1 kHz. Furthermore, seven of
the sequences originally providing 8 channels are encoded
with two channels (channel 1 and channel 2) to obtain stereo
audio. All sequences are encoded at a 128 kbps bitrate. Addi-
tionally, four of them are encoded at 64 kbps, 192 kbps, and
256 kbps. In our measurements, we consider both MP3- and
AAC-encoded audio files.

Considering the speaker power, we assume that the powers
of the chosen audio files are representative. A power of zero
is obtained using the ‘Silence’ audio file. The volume is
considered by measuring some audio files plus the silent
file in the mute, medium volume, and maximum volume
cases.

Most measurements are conducted performing pure audio
or pure video streaming. However, we take into account
that the power in simultaneous audio and video streaming
could differ from the power in pure audio or video streaming
such that additional combined streams are tested. Therefore,
we choose a subset of 8 video sequences and a subset of 8
audio files for combined measurements. Table 5 lists these
files and the combinations.

Due to restrictions on the software or the DUT, and to
reduce the number of required measurements, several com-
ponents were not measured for all test cases. These are the
source (which can be the local memory or a network), the dis-
play as well as the speaker (which are external for device A),
and the video as well as the audio codec. The exact tested
settings for each hardware-software combination (HSC) are
listed in Table 6.

TABLE 5. Video sequences and audio files for audio-video measurements.
The combinations are shown in the two rightmost columns.

TABLE 6. Tested settings for the hardware-software combinations (HSCs)
indicated on the first two lines.

IV. MODEL TRAINING AND VALIDATION
We perform model training and validation separately for
each HSC. This is done because the power characteristics of
different hardware and software implementations can differ
significantly. We consider application I on all three devices
and application II only on device A.

For model training on each HSC, we perform M mea-
surements, where for each measurement, the corresponding
vector of input variables v of length K is determined. Then,
we accumulate all row vectors v into the M × K -matrix V ,
such that we can rewrite (1) to

P̂ = V · x, (16)

where P̂ is the vector of M estimated powers.
To be able to interpret the optimal parameter values in x,

we normalize all variables in V to the range [0, 1] and obtain
Vnorm. For example, the brightness levels H , which were
originally given in the range H ∈ [0, 255], are divided by
the respective maximum value Hmax = 255.

Then, to obtain optimal parameter values for the vector x,
we minimize the sum of squared errors between the measured
powers Pm and the estimated powers P̂m as

min
x∈IRK

(
ε =

M∑
m=1

(
P̂m − Pm

)2)
, (17)
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where Pm and P̂m denote the m-th entry of the vectors P and
P̂, respectively. This is done by using a trust-region reflective
algorithm [46]. Furthermore, as we expect all variables to
have a positive relation to the power consumption, we define
the lower bound of all parameters x to be zero.
To show the validity of the model, we perform

cross-validation to strictly separate the training from the val-
idation data. Therefore, we split the set of measurements into
five subsets. The first subset contains measurements with the
‘BlackScreen’ and the ‘WhiteScreen’ video sequences and
the ‘Silent’ audio file. For the other four subsets, the remain-
ing measurements are ordered by audio and video sequences
and split in such a way that no source file (audio or video)
occurs in two subsets. Then, in five iterations, four of the five
sets are used for model training, and the remaining set is used
for validation.

The models are assessed using the mean of the absolute
relative estimation error given by

ε̄ =
1
M

M∑
m=1

∣∣∣∣∣ P̂m − PmPm

∣∣∣∣∣ . (18)

V. MODEL OPTIMIZATIONS
The main target of this paper is to determine the most impor-
tant factors describing the overall power consumption during
video streaming. Therefore, we propose to use a feature
selection approach to prune the original set of input variables
to the most important ones.

The proposed selection algorithm is based on the
well-known wrapper approach [47] with a special selection
criterion. In this approach, the optimal set of features is
determined iteratively, where in each iteration k , one feature
is dropped after one training instance (backward selection).
During each training instance (loop over c), all HSCs are
trained separately. The whole process is described in Algo-
rithm 1.

1 for k ← {K ,K − 1,K − 2, . . . , 2, 1} do
2 for c← {A− I ,A− II ,B− I ,C − I } do
3 Train xc with k remaining variables (17);
4 end
5 x̄ = mean(xA−I, xA−II, xB−I, xC−I);
6 i← argmin x̄;
7 Remove the feature with the index i from V ;
8 end

Algorithm 1 Feature Selection Algorithm [47]

In the first iteration, we begin using all features, i.e., all
variables from Table 1 are included in the model (k = K ).
In ll. 2-4, we train the model using (17) for all HSCs and save
the corresponding estimation errors (18). Then, we consider
the values of the trained parameters xc in order to determine
the feature i that will be dropped at the end of the iteration.
This is done by calculating the mean of the parameter values
over all HSCs x̄ (l. 5), where unused parameters are neglected

FIGURE 4. Mean estimation errors for all HSCs (legend) per iteration
index k (cross-validated). Points of interest, which are further discussed
in Section VI, are marked by black arrows.

by the mean-operator.2 The mean parameter yielding the
smallest value is then assigned the index i (l. 6). As all input
variables are normalized to the range [0, 1] (cf. Section IV),
the small value of the mean parameter indicates that the
corresponding feature i has the lowest mean impact on the
overall value of the estimated power consumption P̂ for all
HSCs. Hence, in l. 7 we remove the corresponding variable
from V because we expect it to have the smallest impact on
the mean estimation error. In the next iteration, we repeat
this process with k = K − 1 variables and again remove the
variable showing the smallest impact. This process is repeated
until no variable is left (k = 0).
In the algorithm, the mean value over the four HSCs is

chosen because of the following reason. The goal of the
proposed power model is to find variables that allow accurate
power modeling independent from the used hardware and
software. Therefore, in each iteration, we train separately
(because the trained parameter values depend on the used
hardware and software), but we discard variables that are of
low importance for all HSCs, which is reflected by an overall
small mean value.

The result of this process is depicted in Fig. 4. We can
see the mean estimation errors ε̄ (vertical axis) for all HSCs
over the iteration index k (horizontal axis). Due to backwards
counting in the loop, the first iteration corresponds to k = 21.
Additionally, k represents the number of variables used for
modeling per iteration.

VI. DISCUSSION
As points of interest, we choose k = 21, k = 11, and
k = 4 (see black arrows). The former point is chosen because
it represents the full model from Table 1. The point k = 11 is

2Unused parameters occur when a certain part of the streaming pipeline
is not part of the measured HSC. For example, the display is not part of the
A-I setup such that the corresponding parameters Fdisplay, H , and L are not
used to calculate x̄.
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TABLE 7. Mean estimation errors ε̄ for the models with k = 4, k = 11,
and k = 21 features for all HSCs.

chosen because it reaches similar estimation errors compared
to k = 21 with a significantly reduced number of variables.
Finally, k = 4 is chosen because it reaches estimation errors
below 10% with the smallest number of variables.

The estimation errors for the three considered models are
summarized in Table 7. We can see that in terms of modeling
accuracy, it is generally not helpful to consider all variables
listed in Table 1, because in some cases, the estimation error
is even higher for k = 21 than for k = 11, which can be
explained by overfitting. Still, it is possible to obtain decent
estimation errors (below 8%) using four variables (k = 4),
which include a constant offset power 50, the bitrate in
the case of Wi-Fi streaming bwifi (audio plus video bitrate
when the Wi-Fi connection is used for streaming), the linear
brightness of the display H , and the frame rate of the video
fv.

To evaluate the impact of the features in more detail,
Table 8 lists the optimally trained parameter values for the
model case of k = 11 and HSC B-I. The order of the
variables is chosen in such a way that the index k corresponds
to the iteration in which the corresponding variable as well
as the corresponding parameter was removed. Please note
that trained values differ for the other HSCs and for other
iterations.

Due to training on normalized variables, the values can
be interpreted as the maximum power contribution of the
corresponding variable. For example, when the frame rate
attains its maximum value fv = 60 (cf. Table 3), the power
attributed to the frame rate would yield the product of the
parameter value with the normalized frequency given as 1 ·
0.35W = 0.35W. When the frame rate is halved, the power
contribution yields 30Hz

60Hz · 0.35W = 0.175W.
We can see that the parameter 50 = 0.90W shows the

highest value, whichmeans that most of the power is constant,
i.e., it cannot be controlled by changing input parameters.
However, power can be saved by changing the display bright-
ness (maximum contribution 0.79W) and the video’s frame
rate (maximum contribution 0.35W at the maximum frame
rate).

Furthermore, the bitrate of the video stream has a high
influence (0.38W), which is even higher when using the
Wi-Fi connection (an additional power of 0.21W). Please
note that the Wi-Fi streaming bitrate bwifi is only nonzero
when the Wi-Fi connection is used for streaming. As the
bitrates for Ethernet and 3G streaming are already dropped
for k = 11, this is an indication that Wi-Fi streaming needs
significantly more power than the other networks. Besides,
it is striking that for k = 4, only the Wi-Fi streaming bitrate

TABLE 8. Features per iteration k for k = 1 to k = 11 variables. For each
iteration k , all variables with a smaller k are included. Trained parameter
values on the right are given for HSC B-1, k = 11. All entries are included
in the model with k = 11, bold entries are also included in the model
with k = 4.

remains in the model, which shows that the bitrate in Wi-Fi
streaming has a higher influence on the streaming power than
on the video processing power.

For the video processing branch, the most important vari-
ables are the linear display brightness H and the frame rate
fv, because they are the only variables left for k = 4. For a
higher estimation accuracy, the quadratic display brightness,
the decoding offset Fv, the video bitrate bv, and the pixels
per second G can additionally be considered as they are
selected for k = 11. The fact that both linear and quadratic
display brightness are selected for k = 11 indicates that a
purely linear approach, which was proposed in [30], is not
sufficient to accurately model the power consumption of a
display.

For the audio branch, results indicate that audio processing
and the speaker have a rather small influence, which can
sufficiently well be modeled by a constant (8 = 0.11W).
Considering a very simple model with k = 4, audio can even
be neglected because no corresponding variable is left.

VII. CONCLUSION
This paper analyzed the power consumption of video stream-
ing applications on portable devices. It is the first work that
considers the power behavior of the complete device. To this
end, a model summarizing various high-level models of
the most important functional components was constructed.
An analysis performed with the help of feature selection
revealed that there are three major components that can be
exploited to manipulate and optimize the power consump-
tion: display brightness, the frame rate of the video, and the
streaming bitrate.

Future work can exploit this information to determine the
video parameters leading to the best compromise between
power consumption and perceptual video quality. Further-
more, modern video content such as 4K video, 3D, or the 360◦

projection formats can be taken into account. Finally, it would
be interesting to perform such an evaluation on the sender side
including video capture, encoding, and transmission.

70242 VOLUME 8, 2020



C. Herglotz et al.: Power Modeling for Video Streaming Applications on Mobile Devices

REFERENCES
[1] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update, 2017–2022. Accessed: Feb. 2019. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-738429.html

[2] The Shift Project. (2019). Climate Crisis: The Unsustainable Use of
Online Video’: Our New Report on the Environmental Impact of ICT.
[Online]. Available:‘https://theshiftproject.org/en/article/unsustainable-
use-online-video/

[3] M. Jamali and S. Coulombe, ‘‘Fast HEVC intra mode decision based on
RDOcost prediction,’’ IEEETrans. Broadcast., vol. 65, no. 1, pp. 109–122,
Mar. 2019.

[4] K.-H. Tai, M.-Y. Hsieh, M.-J. Chen, C.-Y. Chen, and C.-H. Yeh, ‘‘A fast
HEVC encoding method using depth information of collocated CUs and
RD cost characteristics of PU modes,’’ IEEE Trans. Broadcast., vol. 63,
no. 4, pp. 680–692, Dec. 2017.

[5] L. Zhu, Y. Zhang, Z. Pan, R. Wang, S. Kwong, and Z. Peng, ‘‘Binary
and multi-class learning based low complexity optimization for HEVC
encoding,’’ IEEE Trans. Broadcast., vol. 63, no. 3, pp. 547–561, Sep. 2017.

[6] E. Yaacoub, Z. Dawy, S. Sharafeddine, and A. Abu-Dayya, ‘‘Joint energy-
distortion aware algorithms for cooperative video streaming over LTE net-
works,’’ Signal Process., Image Commun., vol. 28, no. 9, pp. 1114–1131,
Oct. 2013.

[7] Y. I. Choi andC.G.Kang, ‘‘Scalable video coding-basedMIMObroadcast-
ing system with optimal power control,’’ IEEE Trans. Broadcast., vol. 63,
no. 2, pp. 350–360, Jun. 2017.

[8] L. Zou, R. Trestian, and G.-M. Muntean, ‘‘E3DOAS: Balancing QoE and
energy-saving for multi-device adaptation in future mobile wireless video
delivery,’’ IEEE Trans. Broadcast., vol. 64, no. 1, pp. 26–40, Mar. 2018.

[9] R. Martinez Alonso, D. Plets, M. Deruyck, L. Martens, G. Guillen Nieto,
and W. Joseph, ‘‘TV white space and LTE network optimization toward
energy efficiency in suburban and rural scenarios,’’ IEEE Trans. Broad-
cast., vol. 64, no. 1, pp. 164–171, Mar. 2018.

[10] X. Li, Z. Ma, and F. C. A. Fernandes, ‘‘Modeling power consumption
for video decoding on mobile platform and its application to power-rate
constrained streaming,’’ in Proc. Vis. Commun. Image Process. (VCIP),
San Diego, CA, USA, Nov. 2012, pp. 1–6.

[11] T. Mallikarachchi, D. S. Talagala, H. K. Arachchi, and A. Fernando,
‘‘A feature based complexity model for decoder complexity optimized
HEVC video encoding,’’ in Proc. IEEE Int. Conf. Consum. Elec-
tron. (ICCE), Las Vegas, NV, USA, Jan. 2017, pp. 366–369.

[12] C. Herglotz, A. Heindel, and A. Kaup, ‘‘Decoding-energy-rate-distortion
optimization for video coding,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 29, no. 1, pp. 171–182, Jan. 2019.

[13] R. Yang, M. Xu, Z. Wang, Y. Duan, and X. Tao, ‘‘Saliency-guided com-
plexity control for HEVC decoding,’’ IEEE Trans. Broadcast., vol. 64,
no. 4, pp. 865–882, Dec. 2018.

[14] Q. Liu, Z. Yan, and C. W. Chen, ‘‘Cloud-based video streaming with
systematic mobile display energy saving: Rate-distortion-display energy
profiling,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Phoenix, AZ,
USA, Sep. 2016, pp. 1504–1508.

[15] A. Carroll and G. Heiser, ‘‘The systems hacker’s guide to the galaxy energy
usage in a modern smartphone,’’ in Proc. 4th Asia–Pacific Workshop
Syst. (APSys), Singapore, 2013, pp. 1–7.

[16] C. Herglotz, S. Coulombe, A. Vakili, and A. Kaup, ‘‘Power modeling for
virtual reality video playback applications,’’ in Proc. IEEE 23rd Int. Symp.
Consum. Technol. (ISCT), Ancona, Italy, Jun. 2019.

[17] C. Herglotz, A. Kaup, S. Coulombe, and A. Vakili, ‘‘Power-efficient video
streaming on mobile devices using optimal spatial scaling,’’ in Proc.
IEEE 9th Int. Conf. Consum. Electron. (ICCE-Berlin), Berlin, Germany,
Sep. 2019, pp. 1–6.

[18] L. Zou, A. Javed, and G.-M. Muntean, ‘‘Smart mobile device power
consumption measurement for video streaming in wireless environments:
WiFi vs. LTE,’’ in Proc. IEEE Int. Symp. Broadband Multimedia Syst.
Broadcast. (BMSB), Cagliari, Italy, Jun. 2017, pp. 1–6.

[19] L. Sun, R. K. Sheshadri,W. Zheng, andD. Koutsonikolas, ‘‘ModelingWiFi
active power/energy consumption in smartphones,’’ in Proc. IEEE 34th Int.
Conf. Distrib. Comput. Syst., Madrid, Spain, Jun. 2014, pp. 41–51.

[20] T. Simunic, L. Benini, and G. De Micheli, ‘‘Energy-efficient design
of battery-powered embedded systems,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 9, no. 1, pp. 15–28, Feb. 2001.

[21] J. Dolezal and Z. Becvar, ‘‘Methodology and tool for energy consumption
modeling of mobile devices,’’ in Proc. IEEE Wireless Commun. Netw.
Conf. Workshops (WCNCW), Apr. 2014, pp. 34–39.

[22] P. Raoufi and J. Peters, ‘‘Energy-efficient wireless video streaming
with H.264 coding,’’ in Proc. IEEE Int. Conf. Multimedia Expo Work-
shops (ICMEW), San Jose, SA, USA, Jul. 2013, pp. 1–6.

[23] C. Herglotz, D. Springer, M. Reichenbach, B. Stabernack, and A. Kaup,
‘‘Modeling the energy consumption of theHEVCdecoding process,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 28, no. 1, pp. 217–229, Jan. 2018.

[24] D. Sostaric, D. Vinko, and S. Rimac-Drlje, ‘‘Power consumption of video
decoding on mobile devices,’’ in Proc. ELMAR, Sep. 2010, pp. 81–84.

[25] C. Herglotz and A. Kaup, ‘‘Decoding energy estimation of an HEVC hard-
ware decoder,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Firenze,
Italy, May 2018, pp. 1–5.

[26] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
‘‘A close examination of performance and power characteristics of 4G LTE
networks,’’ inProc. 10th Int. Conf. Mobile Syst., Appl., Services (MobiSys),
New York, NY, USA, 2012, pp. 225–238.

[27] F. Xu, Y. Liu, Q. Li, and Y. Zhang, ‘‘V-edge: Fast self-constructive power
modeling of smartphones based on battery voltage dynamics,’’ in Proc.
10th USENIX Symp. Networked Syst. Design Implement. (NSDI), vol. 13,
2013, pp. 43–56.

[28] R. Ren, M. Raulet, C. Sanz, E. Juarez, and F. Pescador, ‘‘Energy estima-
tion models for video decoders: Reconfigurable video coding-CAL case-
study,’’ IET Comput. Digit. Techn., vol. 9, no. 1, pp. 3–15, Jan. 2015.

[29] Z. He, W. Cheng, and X. Chen, ‘‘Energy minimization of portable video
communication devices based on power-rate-distortion optimization,’’
IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 5, pp. 596–608,
May 2008.

[30] J.-W. Kim, K.-H. Lee, J.-G. Bae, H.-G. Kim, and J.-O. Kim, ‘‘Optimal
liquid crystal display backlight dimming based on clustered contrast loss,’’
Opt. Eng., vol. 54, no. 10, Oct. 2015, Art. no. 103112.

[31] A. Carroll and G. Heiser, ‘‘An analysis of power consumption in a smart-
phone,’’ in Proc. USENIX Conf., Boston, MA, USA, Jun. 2010, p. 21.

[32] B. Girod, R. Rabenstein, and A. Stenger, Signals and Systems. New York,
NY, USA: Wiley, 2001.

[33] D. Hackenberg, R. Schone, T. Ilsche, D.Molka, J. Schuchart, and R. Geyer,
‘‘An energy efficiency feature survey of the intel haswell processor,’’ in
Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshop, May 2015,
pp. 896–904.

[34] D. Correa, G. Correa, D. Palomino, and B. Zatt, ‘‘OTED: Encoding opti-
mization technique targeting energy-efficient HEVC decoding,’’ in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2018, pp. 1–5.

[35] N. Nethercote and J. Seward, ‘‘Valgrind: A framework for heavyweight
dynamic binary instrumentation,’’ ACM SIGPLAN Notices, vol. 42, no. 6,
pp. 89–100, Jun. 2007.

[36] (Mar. 2020). Performance Application Programming Interface (PAPI).
[Online]. Available: http://icl.cs.utk.edu/papi/

[37] G. Correa, P. Assuncao, L. Agostini, and L. A. da Silva Cruz, ‘‘Perfor-
mance and computational complexity assessment of high-efficiency video
encoders,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12,
pp. 1899–1909, Dec. 2012.

[38] E. Monteiro, M. Grellert, S. Bampi, and B. Zatt, ‘‘Energy-aware cache
assessment of HEVC decoding,’’ in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), Montreal, QC, Canada, May 2016, pp. 574–577.

[39] Adobe Flash Video File Format Specification Version 10.1, Adobe
Syst., San Jose, CA, USA, Aug. 2010. [Online]. Available:
https://www.adobe.com/content/dam/acom/en/devnet/flv/video_file_
format_spec_v10_1.pdf

[40] S.-Y. Tseng, K.-H. Lin,W.-S.Wang, C.-T. King, and S.-H. Chang, ‘‘Perfor-
mance and power consumption analysis of DVFS-enabled H.264 decoder
on heterogeneous multi-core platform,’’ in Proc. 10th IEEE Int. Conf.
Comput. Inf. Technol., Bradford, U.K., Jun. 2010, pp. 1758–1763.

[41] VideoLAN. (2020). VLC Media Player. Accessed: Mar. 2020. [Online].
Available: http://www.videolan.org/vlc/

[42] J. Bendat and A. Piersol, Random Data: Analysis and Measurement Pro-
cedures. Hoboken, NJ, USA: Wiley, 1971.

[43] F. Bossen, Common Test Conditions and Software Reference Configura-
tions, Standard JCTVC-L1100, Joint Collaborative Team on Video Cod-
ing (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11,
Geneva, Switzerland, Switzerland, Tech. Rep, Jan. 2013.

[44] Speech and Multimedia Transmission Quality (STQ); Speech Quality Per-
formance in the Presence of Background Noise; Part 1: Background Noise
Simulation Technique and Background Noise Database, Standard ETSI ES
202 396-1 V1.7.1 (2017-10), 2017.

VOLUME 8, 2020 70243



C. Herglotz et al.: Power Modeling for Video Streaming Applications on Mobile Devices

[45] P. Kabal. (2002). TSP Speech Database. McGill University, Database
Version. [Online]. Available: http://www-mmsp.ece.mcgill.ca/Documents/
Data/

[46] T. F. Coleman and Y. Li, ‘‘An interior trust region approach for non-
linear minimization subject to bounds,’’ SIAM J. Optim., vol. 6, no. 2,
pp. 418–445, May 1996.

[47] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, ‘‘Feature
selection for high-dimensional data,’’ Prog. Artif. Intell., vol. 5, no. 2,
pp. 65–75, 2016.

CHRISTIAN HERGLOTZ (Member, IEEE)
received the Dipl.-Ing. degree in electrical engi-
neering and information technology and the
Dipl.-Wirt. Ing. degree in business administra-
tion and economics from Rheinisch-Westfälisch
Technische Hochschule (RWTH) Aachen Univer-
sity, Germany, in 2011 and 2012, respectively,
and the Dr.-Ing. degree from Friedrich-Alexander
University Erlangen-Nürnberg (FAU), Germany,
in 2017. Since 2012, he has been a Research

Scientist with the Chair of Multimedia Communications and Signal Pro-
cessing, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Ger-
many. In 2018 and 2019, he worked as a Postdoctoral Fellow at the
École de technologie supérieure (ÉTS) in collaboration with Summit Tech
Multimedia Communication Inc., Montréal, QC, Canada, on energy effi-
cient VR technologies. Since 2019, he has also been a Senior Scientist
with Friedrich-Alexander University Erlangen-Nürnberg (FAU). His current
research interests include energy efficient video communications and video
coding.

STÉPHANE COULOMBE (Senior Member,
IEEE) received the B.Eng. degree in electrical
engineering from the École Polytechnique de
Montréal, Canada, in 1991, and the Ph.D. degree
in telecommunications (image processing) from
INRS-Telecommunications, Montreal, in 1996.
From 1997 to 1999, he was with the Nortel Wire-
less Network Group inMontreal, and from 1999 to
2004, he worked with the Nokia Research Center,
Dallas, TX, USA, as a Senior Research Engineer

and as a ProgramManager in the Audiovisual Systems Laboratory. He joined
ÉTS, in 2004, where he currently carries out research and development
on video processing and systems, compression, and transcoding. From
2009 to 2018, he has held the Vantrix Industrial Research Chair in Video
Optimization. He is also a Professor with the Department of Software and IT
Engineering, École de Technologie Supérieure (ÉTS is a constituent of the
Université du Québec network).

CARLOS VAZQUEZ (Senior Member, IEEE)
received the B.Eng. and M.Sc. degrees from
the Technical University of Havana (CUJAE),
in 1992 and 1997 respectively, and the Ph.D.
degree from the INRS-Energy, Materials and
Telecommunications (EMT) in Montréal, QC,
Canada, in 2003. He has been an Assistant Pro-
fessor with the Department of Software and IT
Engineering, École de Technologie Supérieure
(ÉTS-Montréal), since 2013. His research interests

are in the general fields of image and video processing and computer vision,
more specifically he is interested in 3D reconstruction from images, quality
evaluation of immersive visual content, augmented reality and 3D-360 video
processing, and analysis and coding.

AHMAD VAKILI received the B.Sc. and M.Sc.
degrees in Electrical Engineering from Tehran
Polytechnic, and the Ph.D. degree in telecommu-
nications from INRS, Montreal. Prior to his Ph.D.,
he had more than six years of professional work
experience, as a Lecturer and an Electrical Engi-
neer. He is currently the Chief Research andDevel-
opment Officer with Summit Tech Multimedia
Communications Inc. His recent research mainly
focuses on 360-8K-VR video codecs and transmis-

sion, AI projects, such as voice authentication and recognition, RCS in the
IoT, and so on. His research interests include multimedia communication
services, VR, video codec, RCS, AI, QoS, and QoE management.

ANDRÉ KAUP (Fellow, IEEE) received the
Dipl.-Ing. and Dr.-Ing. degrees in electrical engi-
neering from RWTH Aachen University, Aachen,
Germany, in 1989 and 1995, respectively. He was
with the Institute for Communication Engineering,
RWTH Aachen University, from 1989 to 1995 and
joined Siemens Corporate Technology, Munich,
Germany, in 1995, where he became the Head
of the Mobile Applications and Services Group,
in 1999. Since 2001 he has been a Full Profes-

sor and the Head of the Chair of Multimedia Communications and Sig-
nal Processing, Friedrich-Alexander University Erlangen-Nürnberg (FAU),
Germany. From 2015 to 2017, he has served as the Head of the Department
of Electrical Engineering and the Vice Dean of the Faculty of Engineering,
FAU. He has authored around 350 journal and conference papers and has
over 120 patents granted or pending. His research interests include image and
video signal processing and coding. He is a member of the IEEEMultimedia
Signal Processing Technical Committee and a member of the scientific
advisory board of the German VDE/ITG. He was named Siemens Inventor
of the Year 1998 and received several best paper awards. His group won
the Grand Video Compression Challenge at the Picture Coding Symposium
2013. The Faculty of Engineering at FAU honored him with the Teaching
Award, in 2015. He is a member of the Bavarian Academy of Sciences.

JEAN-CLAUDE GRENIER enlisted at Ahuntsic
College for a degree in software development
until 2004. Afterwards, in 2005, he moved on to
the Université du Québec à Montréal, where he
received the B.Sc. degree in software Engineer-
ing, in 2008. After a few internships during his
studies, he accepted a position in a video game
company due to his interest for the vast complexity
the domain offered. He worked in this industry
for almost ten years before moving to the field of

telecoms. He started working at Summit TechMultimedia in 2015 on a small
team exploring the possibilities virtual reality had to offer to the telecommu-
nications field. He is currently the Lead Developer of an expanding team of
passionate people pushing the boundaries of communications.

70244 VOLUME 8, 2020


	INTRODUCTION
	POWER MODELING
	DATA ACQUISITION
	VIDEO PROCESSING POWER
	DISPLAY OPERATION POWER
	AUDIO PROCESSING POWER
	SPEAKER OPERATION POWER

	POWER MEASUREMENT SETUP
	GENERAL MEASUREMENT SETUP
	DUTS
	SOFTWARE
	POWER MEASUREMENTS
	SET OF MEASUREMENTS

	MODEL TRAINING AND VALIDATION
	MODEL OPTIMIZATIONS
	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	CHRISTIAN HERGLOTZ
	STÉPHANE COULOMBE
	CARLOS VAZQUEZ
	AHMAD VAKILI
	ANDRÉ KAUP
	JEAN-CLAUDE GRENIER


