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Abstract—Virtual reality (VR) streaming is impaired by the
large amount of data required to deliver 360-degree video
resulting in low-quality end user experience when network band-
width is limited, or latency is high. To address these challenges,
proposed in this paper is a novel method for viewpoint prediction
for long-term horizons in VR streaming. This method uses a
long short-term memory (LSTM) encoder-decoder network to
carry out a sequence-to-sequence prediction. To enhance the
results obtained by this network, experiments are performed
using viewpoint information from users on low-latency networks.
By applying an effective tile-based quality assignment after
viewpoint prediction, a 61% average bandwidth saving, with
respect to the transmission of the whole ERP frame, is achieved
along with a high-quality viewport rendered to the end user.

Index Terms—Virtual reality streaming, 360-degree video,
Long short-term memory (LSTM), Viewpoint prediction,
Sequence-to-sequence prediction

I. INTRODUCTION

Virtual reality (VR) offers a unique immersive video expe-
rience by providing 360-degree video in a panoramic view.
Limited bandwidth, high quality requirements, encoder com-
plexity and network latency are the main challenges to deliver
reasonable quality of experience (QoE) to the end users
[1]. Although there have been improvements in computing,
storage/memory, networks and video coding, the community
still needs to deliver improved methods and techniques to
overcome the above-mentioned problems. The principal chal-
lenge in deploying effective VR streaming technologies is the
massive amount of data required to transmit high-quality video
to end users. High-resolution video at high frame rates is
necessary to offer a genuine immersive experience [1]. The
simplest technique to stream VR video is by sending the
entire 360-degree frame, which is much larger than the user’s
viewport, at a uniform quality. This results in sending data for
the invisible parts of the frame, i.e. areas outside the viewport,
leading to inefficient bandwidth usage. In view of this, despite
all the advances made in VR technologies in recent years, there

is a strong need for a streaming approach providing efficient
bandwidth usage while keeping the quality of the viewport as
high as possible.

A successful method in this regard is tile-based video
coding [2]–[5]. Tiled coding divides video frames into rectan-
gular regions. Although it was originally designed for parallel
coding, it is now used for viewport-aware coding in 360-degree
video [6]–[8]. In this approach, tiles are encoded at varying
qualities. Those which overlap with the viewport are encoded
at the highest quality. Other tiles, which do not overlap with
the viewport, are encoded at a lower quality depending on
their distance to the viewport. As a result of this non-uniform
quality encoding, VR streaming service utilizes the bandwidth
efficiently since there is much less data to transmit. A main
requirement for a successful viewport-aware tile-based video
coding is to determine the viewpoint position in a short period
of time [9]. Since there are varying degrees of latency in
streaming networks between servers and end users, the server
cannot always determine in a timely manner the user’s current
viewpoint. Thus, it needs to predict the viewpoint position
to make the tile-based coding effective. Although it is called
viewport prediction in the literature, the problem is actually
viewpoint prediction. By viewpoint, we mean the center of the
viewport which is determined by knowing the yaw and pitch
angles. Viewport is the area of the frame seen by the user on
the end device. In [10], a machine translation model and a
convolutional long short-term memory (LSTM) are used for
viewpoint prediction. The prediction is made for mean and
standard deviation of the viewpoint position over periods of
one second (not on a frame level) which is more appropriate
for HTTP based adaptive video streaming. In [11], a method
has been proposed to predict the motion and the viewpoint
position using the past motion of the user as a feature. To this
end, three regression models are used: naive, linear regression
and neural networks. In [12], a reinforcement learning (RL)
method using contextual bandit is used to make the viewpoint



prediction. To show its usability, the method is deployed on an
adaptive tile-based VR streaming testbed. In [13], a method
has been proposed to predict user’s head turnings to optimize
the delivery of 360-degree video over cellular networks by
sending only the portion of the frame that the user is looking
at. This prediction is done using three methods: average, linear
regression and weighted linear regression (WLR).

In this paper, a novel method for multi-quality tile-based VR
streaming is proposed. This method is based on viewpoint pre-
diction using an LSTM encoder-decoder network along with
viewpoint information form users on low-latency networks
(nearly zero-latency). After viewpoint prediction, a tile-based
quality assignment is applied to send tiles in a frame in three
different qualities. In the prediction phase, we use a sequence-
to-sequence prediction model. The input of this model is a
sequence of viewpoint positions and the output of the model
is the predicted viewpoint positions. The proposed method
considers users on heterogeneous networks with different and
variable latencies and performs the viewpoint prediction for a
long-term horizon of up to 4 seconds. This allows streaming
high-quality VR content to users on low to high-latency net-
works. In addition, the proposed method relies only on users’
viewpoints and not on content processing. In other words, it
does not analyze video content to determine the regions of
interest. This leads to a low-complexity method which does
not burden the encoder/server with heavy computations.

The remainder of this work is organized as follows. In
section II, our proposed method for high-quality VR streaming
is introduced. Section III presents the experimental results and
finally, section IV concludes the paper.

II. PROPOSED METHOD

To send the viewport in high quality, the encoder/server
should be able to know the user’s viewpoint at the time
of tile quality assignment. Since, at this time, for users
on high-latency networks, the viewpoint information is not
available, viewpoint prediction is an inevitable step for tile-
based streaming. In the following, a method for high-quality
VR streaming is presented based on a viewpoint prediction
approach and a tile-based quality assignment policy.

A. Viewpoint prediction

In this section, we develop a sequence-to-sequence predic-
tive model using an LSTM encoder-decoder which achieves
excellent performance in sequence-to-sequence prediction
problems [14]. The predictive model takes the user’s view-
point position history as a sequence and predicts the future
viewpoint positions as a sequence as well. Figure 1 shows the
architecture of the network used for viewpoint prediction. The
encoder takes a sliding window of M frames’ features (yaw or
pitch angles) and a time distributed dense layer, implemented
after the decoder, outputs a prediction window of N frames’
features (yaw or pitch angles). We thus obtain the predicted
viewpoint for future frames ranging from the next one up to the
Nth one. This allows the system to support users with different
and variable latencies.
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Fig. 1: LSTM encoder-decoder network for predicting yaw
and pitch angles. f1 to fM are M input frames’ features (yaw
or pitch angles) and fM+1 to fM+N are N output frames’
features (yaw or pitch angles).

As reported in the literature, roll angle is most of the time
around zero degree [11]. Thus, in this work, the prediction
is made based on the viewpoint and only for yaw and pitch
angles. Moreover, yaw and pitch angles are predicted as two
independent variables since autocorrelation is much stronger
than the correlation between them [11]. Since angles -180 and
179 are only one degree distant, we use sine and cosine of yaw
and pitch angles to map them on a unit circle which makes
it easier for the network to understand the spherical nature
of frames in equirectangular projection (ERP) (e.g, when we
cross the left border we enter from the right border). Since
sine and cosine functions are restricted between -1 and 1, we
use tanh as the activation function of all layers of the network.
In the rest of this work, we use the yaw notation and discuss
the process for yaw angle but the same applies to the pitch
angle as well.

B. Prediction adjustment

Although LSTM is an appropriate model for sequence
prediction, the prediction error increases significantly for long-
term horizons. The error occurs because the user’s current
head direction is not an accurate predictor for the directions in
the next 3-4 seconds. Content usually changes for long-term
horizons resulting in new attractive regions which makes users
turn their heads unexpectedly. This makes it difficult to carry
out predictions far in the future.

To improve the results obtained by the LSTM model, we
consider an additional step. Assuming that some users are
on low-latency networks, and that they are viewing the same



content, their viewpoint information is used to adjust the
output of the predictive model. The adjustment is made based
on circular mean and circular variance [15] of these guide
users’ yaw and pitch angles. The new adjusted yaw angle is
computed as:

Ya = (1−W )× Yp +W × Yg

W = (1−V 1/3
g )× (h/Pmax)

0 ≤Vg ≤ 1

0 ≤h ≤ Pmax,

(1)

where Yp is the predicted yaw angle obtained by the LSTM
model, Yg is the average yaw angle of the guide users and Ya

is the adjusted yaw angle of a target user. Vg is the circular
variance [15] of guide users’ viewpoints. W is a confidence
factor, between 0 and 1, of the guide users’ information. W
is high when the circular variance is low (guide users look
at a similar positions) and we predict far in the future where
LSTM is unlikely to perform well. A low variance suggests
that there is one region of interest in the frame. On the other
hand, a high variance means it is less likely that there is one
region of interest; thus, the viewpoint predicted by the LSTM
network is considered more important by applying a larger
weight. h is the time horizon (the frame in the future we are
predicting the viewpoint for) and Pmax is the maximum size of
the prediction window. Applying this time horizon term makes
sure that when the prediction is made for the near future, the
target user’s LSTM-predicted viewpoint has a dominant role
and when the prediction is made for the far future, given the
guide users’ variance is low, the guide users are considered
more important.

C. Viewport generation

To generate the predicted viewport, we use the rectilinear
projection. This projection, which is also called ‘gnomic’,
‘gnomonic’ and ‘tangent-plane’, is used to map a part of a
sphere surface to a flat plane [16]. Figure 2 shows how a
viewport is generated using rectilinear projection. For viewport
generation the viewpoint angle is assumed to be along the Z
axis. When this is not the case, the sphere is rotated to align
the viewpoint with the Z axis, and then viewport generation
is carried out. Viewport generation starts from pixels on the
corresponding 2D coordinates in the source projection plane
(ERP in our problem) which are mapped to the corresponding
3D (X, Y, Z) coordinates on the sphere surface. Then, every
pixel is processed to see whether it is on the viewport plane
generated by rectilinear projection. If it is on this plane, it
is considered part of the viewport. At the end, all pixels
belonging to the viewport on the 2D frame are known.

D. Tiles quality assignment

After viewpoint prediction and viewport generation, differ-
ent qualities are assigned to the frame tiles. We consider three
levels of quality. Tiles that overlap with the predicted viewport
will be sent with the highest quality. Their neighboring tiles
are sent with the second level of quality and the remaining

 

Fig. 2: Viewport generation with rectilinear projection [16].

tiles are sent with the lowest quality. In our experiments the
viewport is an area with a width of 110 degrees and a height
of 90 degrees [13]. The frame, in ERP format, has a height
of 180 degree and a width of 360 degree.

To compute the bandwidth saving, we consider the non-tiled
streaming sent at b Mbps. For the tiled streaming, each of the
highest quality tiles is sent at b/(m×n) Mbps, where (m×n)
is the number of tiles. Each of the second-level tiles is sent
at b/(2 × m × n) Mbps and each of the third-level tiles is
sent at b/(8×m× n) Mbps. This assures that when we have
prediction errors, the user still sees the content (although at a
lower quality) instead of a black image as is the case if only
the predicted viewport’s tiles are sent.

III. EXPERIMENTAL RESULTS

In this section, we present the results of our experiments by
comparing our proposed method to some baseline methods.
Thus the results are reported for ‘linear regression’ [11],
[13], ‘persistence’ [10], ‘LSTM encoder-decoder’ and ‘LSTM
+ guide users’. In the persistence prediction the last know
viewpoint is used as predictor, which means it assumes a no-
motion model for the user. In linear regression, a liner model is
created to fit all the data points in the sliding window and then
this model is used to predict the future viewport trajectory.

The results are reported based on root mean square error
(RMSE) between the real and predicted viewpoint positions,
viewport overlap with high-quality and medium-quality tiles,
and bandwidth saving. For our experiments, we consider a
dataset provided in [17] since the content in this experiment
is related to live VR streaming such as a basketball match
or a talk show. This dataset includes 48 users watching 9
videos. For each video, one minute of the content is selected.
We consider 7 videos for training and two videos for testing
(Basketball Match and Showtime Boxing). We conduct 48
experiments. In each of them one user is considered on a
high-latency network and the other 47 users on a low-latency
network. Then the average results over these 48 experiments
are taken as the final results to provide a cross validation over
all users. The data in this dataset is provided in unit quaternion
which shows the head-mounted display’s (HMD) direction.



TABLE I: Prediction RMSE error and high- and medium-quality viewport for long-term horizon (3.6 s)

Method Yaw RMSE (◦) Pitch RMSE (◦) HQV(%) HQV + MQV(%)
Linear regression 41.6 13.1 70.2 93.8
Persistance 26.4 4.2 84.4 98.6
LSTM enc.-dec. 23.4 4.0 87.6 98.9
LSTM + guide users 16.5 3.6 95.9 99.7
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Fig. 3: Prediction error based on RMSE for the entire predic-
tion window.

We convert these coordinates to X, Y and Z on a unit sphere
and then to yaw and pitch angles. To train our model and to
make predictions, we use the sine and cosine of yaw and pitch
angles. Input sliding window and output prediction window
are set to 20 and 120 frames respectively (M=20, N=120) and
Pmax is set to 200. A grid of 12 × 12 tiles is applied to
each frame in these experiments. The videos are sampled at
every 30 ms which means we are using a window of 600 ms
to predict all the frames in the next 3.6 s. This makes our
method suitable for a long-term horizon prediction and helps
to deliver high-quality VR content to users on high-latency
networks.

Based on our tiles quality assignment method discussed
in section II-D, the average bandwidth saving for all four
methods is the same and is equal to 61%. Bandwidth saving
is not dependent on the viewport prediction method but on the
target bitrate ratio for each quality level. Figure 3 shows the
yaw prediction error based on RMSE, for the entire prediction
window. Pitch error is negligible and does not significantly
affect the quality. Table I shows the error for both yaw and
pitch angles for a long-term horizon (3.6 s). This table also
shows high-quality viewport (HQV) and the combination of
HQV and medium-quality viewport (MQV). HQV and MQV
show the overlap (in percentage) between the viewport seen
by the user and the high-quality and medium-quality tiles,
respectively. This table shows that ‘LSTM + guide users’
is highly effective when it is applied to a distant future. In
addition, Fig. 4 shows HQV and HQV+MQV as a bar graph
for a long-term horizon. Based on the experimental results,
our proposed method achieves a high-accuracy prediction and
delivers a high-quality viewport. It is only based on viewpoint

Linear reg. Persistence LSTM enc.-dec. LSTM+guide users60

70

80

90

100

vi
ew

po
rt 

ov
er

la
p 

(%
)

MQV: Medium-quality viewport, HQV: High-quality viewport
HQV
HQV+MQV

Fig. 4: Viewport overlap with high- and medium-quality
regions for long-term horizon (3.6 s).

trajectories which makes it a low-complexity method as it does
not need expensive content processing computations or high-
complexity saliency detection algorithms. Compared to [10],
while their method is proposed for on demand streaming and
video streamed in segments, our method is applicable to both
on demand and live streaming. Moreover, they assume the
viewport is fixed over a period of one second and make the
prediction for mean and standard deviation of the viewpoint
over each second, while in our method the prediction is made
for each frame which makes it possible to adapt faster to
the users’ head movements. Compared to [11], we predict a
long-term horizon (3.6 s) while they make predictions for the
100-500 ms in the future. In summary, our proposed method
predicts future viewpoint positions of up to 4 seconds. Thus
all frames in the prediction window can be encoded using the
predicted positions. It is scalable and latency-adaptive as it is
able to predict multiple frames ahead.

IV. CONCLUSION

In this paper, we proposed a sequence-to-sequence LSTM
prediction model for the problem of viewpoint prediction in
virtual reality streaming. To enhance the results obtained by
this model, we used guide users’ viewpoint information to
adjust the output of the predictive model. These guide users
are assumed to be on low-latency networks while target users
are on high-latency networks. Based on this prediction, a tile-
based quality assignment is proposed to send tiles of a frame
in three different qualities resulting in a significant bandwidth
saving. By providing a large overlapping area between the
viewport and high-quality tiles, the proposed method delivers
a high-quality VR experience to the end users.
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